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Abstract

This report will show the procedure of how to control a double pendulum using
feedback linearization. The report will start from the derivation of the double
pendulum system, and them derive the feedback linearization controller. Finally
simulation results will be shown.

1 Double Pendulum Dynamics

Figure 1: Illustration of double pendulum

For the double pendulum shown in Figure 1, we can calculate the position of the two masses as

p1 =

(
`1 sin(θ1)
−`1 cos(θ1)

)
(1a)

p2 =

(
`1 sin(θ1) + `2 sin(θ2)
−`1 cos(θ1)− `2 cos(θ2)

)
(1b)

which by differentiating gives the velocities of the two masses

ṗ1 =

[
`1 cos(θ1)θ̇1

`1 sin(θ1)θ̇1

]
(2a)

ṗ2 =

[
`1 cos(θ1)θ̇1 + `2 cos(θ2)θ̇2

`1 sin(θ1)θ̇1 + `2 sin(θ2)θ̇2

]
. (2b)



We can get its kinetic energy as

T =
1

2
m1ṗ

2
1 +

1

2
m2ṗ

2
2

=
1

2
m1

[
(`1 cos(θ1)θ̇1)2 + (`1 sin(θ1)θ̇1)2

]
+

1

2
m2ṗ

2
2

=
1

2
m1`

2
1θ̇

2
1 +

1

2
m2

[
(`1 cos(θ1)θ̇1 + `2 cos(θ2)θ̇2)2 + (`1 sin(θ1)θ̇1 + `2 sin(θ2)θ̇2)2

]
=

1

2
m1`

2
1θ̇

2
1 +

1

2
m2

[
`21θ̇

2
1 + `22θ̇

2
2 + 2`1`2θ̇1θ̇2(cos(θ1) cos(θ2) + sin(θ1) sin(θ2))

]
=

1

2
m1`

2
1θ̇

2
1 +

1

2
m2

[
`21θ̇

2
1 + `22θ̇

2
2 + 2`1`2θ̇1θ̇2 cos(θ1 − θ2)

]
which gives us

T =
1

2
(m1 +m2)`21θ̇

2
1 +

1

2
m2`

2
2θ̇

2
2 +m2`1`2θ̇1θ̇2 cos(θ1 − θ2). (3)

From (1) we can easily obtain the potential energy as

V = −m1g`1 cos(θ1)−m2g
[
`1 cos(θ1) + `2 cos(θ2)

]
. (4)

We can see that both the kinetic and potential energy aligns with what is presented in [1], under
different definitions of the ground height. Now that we have T and V , we define the Lagrangian as

L = T − V (5)

=
1

2
(m1 +m2)`21θ̇

2
1 +

1

2
m2`

2
2θ̇

2
2 +m2`1`2θ̇1θ̇2 cos(θ1 − θ2) +m1g`1 cos(θ1)

+m2g
[
`1 cos(θ1) + `2 cos(θ2)

]
.

Using the Euler-Lagrangian equations

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= Γ (6)

with q being the generalized coordinates and Γ being the generalized force, we can arrive at the
dynamics equations of the double pendulum system. Here we define

q =

[
θ1

θ2

]
and Γ =

[
τ1
τ2

]
.

Using this definition we have

∂L

∂q̇1
= (m1 +m2)`21θ̇1 +m2`1`2θ̇2 cos(θ1 − θ2)

d

dt

(
∂L

∂q̇1

)
= (m1 +m2)`21θ̈1 +m2`1`2θ̈2 cos(θ1 − θ2) +m2`1`2θ̇2 sin(θ1 − θ2)(θ̇2 − θ̇1)

∂L

∂q1
= −m2`1`2θ̇1θ̇2 sin(θ1 − θ2)− (m1 +m2)g`1 sin(θ1)

∂L

∂q̇2
= m2`

2
2θ̇2 +m2`1`2θ̇1 cos(θ1 − θ2)

d

dt

(
∂L

∂q̇2

)
= m2`

2
2θ̈2 +m2`1`2θ̈1 cos(θ1 − θ2) +m2`1`2θ̇1 sin(θ1 − θ2)(θ̇2 − θ̇1)

∂L

∂q2
= m2`1`2θ̇1θ̇2 sin(θ1 − θ2)−m2g`2 sin(θ2).
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If we input these into (6) we will have

τ1 =
d

dt

(
∂L

∂q̇1

)
− ∂L

∂q1

= (m1 +m2)`21θ̈1 +m2`1`2θ̈2 cos(θ1 − θ2) +m2`1`2θ̇2 sin(θ1 − θ2)(θ̇2 − θ̇1)

+m2`1`2θ̇1θ̇2 sin(θ1 − θ2) + (m1 +m2)g`1 sin(θ1)

= (m1 +m2)`21θ̈1 +m2`1`2θ̈2 cos(θ1 − θ2) +m2`1`2θ̇
2
2 sin(θ1 − θ2) + (m1 +m2)g`1 sin(θ1)

and

τ2 =
d

dt

(
∂L

∂q̇2

)
− ∂L

∂q2

= m2`
2
2θ̈2 +m2`1`2θ̈1 cos(θ1 − θ2) +m2`1`2θ̇1 sin(θ1 − θ2)(θ̇2 − θ̇1)

−m2`1`2θ̇1θ̇2 sin(θ1 − θ2) +m2g`2 sin(θ2)

= m2`
2
2θ̈2 +m2`1`2θ̈1 cos(θ1 − θ2)−m2`1`2θ̇

2
1 sin(θ1 − θ2) +m2g`2 sin(θ2).

The special case where τ1 = τ2 = 0 can be found in the appendix of [1]. In state space form we have[
τ1
τ2

]
=

[
(m1 +m2)`21 m2`1`2 cos(θ1 − θ2)

m2`1`2 cos(θ1 − θ2) m2`
2
2

] [
θ̈1

θ̈2

]
+

[
(m1 +m2)g`1 sin(θ1)

m2g`2 sin(θ2)

]
+

[
0 m2`1`2θ̇2 sin(θ1 − θ2)

−m2`1`2θ̇1 sin(θ1 − θ2) 0

] [
θ̇1

θ̇2

] (7)

which can be succinctly written as

τ = M(q)q̈ + C(q, q̇)q̇ +G(q). (8)

To transform this into a more familiar form, we can have[
q̇
q̈

]
=

[
q̇

−M−1(q)[C(q, q̇)q̇ +G(q)]

]
+

[
0

M−1(q)

]
τ (9)

which is in the nonlinear control affine form ẋ = f(x) + g(x)u.

2 MIMO Input-Output Feedback Linearization

In this section, we use the output

y = h(x) =

[
y1

y2

]
=

[
θ1

θ2

]
(10)

and state

x =

x1

x2

x3

x4

 =


θ1

θ2

θ̇1

θ̇2

 (11)

2.1 Nonlinear Change of Coordinates

And we want to find a nonlinear change of coordinates z = Φ(x) that renders the input-output
relationship linear. First we set z11 = y1 = θ1, and by getting its higher-order derivatives we have

ż11 = θ̇1 = x3 = z12

ż12 = θ̈1 = −
[
M−1(q)[C(q, q̇)q̇ +G(q)]

]
1

+
[
M−1(q)

]
1
τ = v1

similarly we define z21 = y2 = θ2 and we have

ż21 = θ̇2 = x4 = z22

ż22 = θ̈2 = −
[
M−1(q)[C(q, q̇)q̇ +G(q)]

]
2

+
[
M−1(q)

]
2
τ = v2.
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We can see that in this case the vector relative degree is {2, 2}, thus, we can say the system has
relative degree n = 4. In state space form we haveż11

ż21

ż12

ż22

 =

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


z11

z21

z12

z22

+

0 0
0 0
1 0
0 1

[v1

v2

]
(12)

which can be written as
ż = Az +Bv. (13)

The new control input is v = [v1, v2]T , which has the following relationship with the true control
input τ

τ = Mv + C(q, q̇)q̇ +G(q). (14)
We can define the change of coordinates Φ(x) as

z =

z1

z2

z3

z4

 = Φ(x) = x =

x1

x2

x3

x4

 =

z11

z21

z12

z22

 . (15)

2.2 Discrete Time System

Now we have the system in the form of (13), however, it is in continuous time formulation, since our
controller can only change control actions at a fixed rate we need to transform this system into its
discrete time counterpart. For a general linear time-invariant (LTI) system

ẋ(t) = Ax(t) +Bu(t) (16)

we can get x(t) the state at time t as

x(t) = eAtx(0) +

∫ t

0

eA(t−τ)Bu(τ)dτ. (17)

If at time tk we have x(tk) and we fix the control u(t) at uk for a time interval ∆t, and we define
tk+1 = tk + ∆t we can have

x(tk+1) = eA∆tx(tk) +

∫ ∆t

0

eA(∆t−τ)Bukdτ

= eA∆t︸ ︷︷ ︸
Ā

x(tk) + eA∆t

∫ ∆t

0

e−AτdτB︸ ︷︷ ︸
B̄

uk

which gives us
x(tk+1) = Āx(tk) + B̄uk. (18)

First we can calculate Ā = eA∆t using the matrices obtained in (12). From Taylor’s expansion we
have

ex =

∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+
x3

3!
+ · · · (19)

thus we have

eA∆t = I +A∆t+
∆t2

2!
A2 +

∆t3

3!
A3 + · · · . (20)

To find a pattern we can write out the first few An’s

A =

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 A2 =

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


thus we have

Ā = eA∆t = I +A∆t =

1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 . (21)
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Then let’s calculate B̄, the only unknown component is the integral, which can be calculated as∫ ∆t

0

e−Aτdτ =

∫
∆t

0

1 0 −τ 0
0 1 0 −τ
0 0 1 0
0 0 0 1

 dτ

=



∫ ∆t

0

1dτ 0 −
∫ ∆t

0

τdτ 0

0

∫ ∆t

0

1dτ 0 −
∫ ∆t

0

τdτ

0 0

∫ ∆t

0

1dτ 0

0 0 0

∫ ∆t

0

1dτ



=

∆t 0 −1/2∆t2 0
0 ∆t 0 −1/2∆t2

0 0 ∆t 0
0 0 0 ∆t


which inputting into the B̄ calculation gives us

B̄ =

1/2∆t2 0
0 1/2∆t2

∆t 0
0 ∆t

 . (22)

This gives us the discrete time version of the system defined in (12)

zk+1 =

1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 zk +

1/2∆t2 0
0 1/2∆t2

∆t 0
0 ∆t

 vk, (23)

which succinctly we can write as
zk+1 = Āzk + B̄vk (24)

2.3 LQR Target Reaching and Reference Tracking

Then for this linear system we can use LQR to achieve target reaching and reference tracking. We
first define the control problem as

min
{ui}i=1,··· ,N

1

2
(xN − x̄N )TQN (xN − x̄N ) +

N∑
n=0

1

2
(xn − x̄n)TQn(xn − x̄n) + uTnRnun

subject to xn+1 = Anxn +Bnun + ωn

(25)

and the optimal LQR controller has the form of un = Knxn + kn, where
Kn = −(Rn +BTnPn+1Bn)−1BTnPn+1An (26a)

Pn = Qn +ATnPn+1An +ATnPn+1BnKn (26b)

kn = −(Rn +BTnPn+1Bn)−1BTn pn+1 (26c)

pn = qn +ATnpn+1 +ATnPn+1Bnkn (26d)
qn = −Qnx̄n (26e)

here the sequence is initialized as PN = QN and pN = qN . Using LQR on the system defined
in (23) we can then move the state to the target state or make it follow a reference trajectory. If we
are simply trying to reach a non-zero target we can solve the discrete-time algebraic Ricatti equation

P = Q+ATPA−ATPB(BTPB +R)−1BTPA (27a)

K = −(BTPB +R)−1BTPA (27b)
and we get the control as

u = K(x− x̃) (28)
where x̃ is the non-zero target. The overall procedure is given in Figure 2.
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Figure 2: Feedback Linearization Procedure.

Figure 3: Swing-Up Trajectory. The illustration on the left shows snapshots of double pendulum
along the trajectory. The snapshots are taken evenly spaced in time. We can see that that once the
double pendulum is near the top it oscillates for a relative long period compared to the swing-up
phase. The four plots on the right shows the angle and angular velocity of the two links over time.

3 Experimental Results

In this section, we will show the experimental results for a double pendulum swing-up task and a
reference trajectory tracking task.

3.1 Swing-Up Task

In this section we will show how to create a swing-up controller for a double pendulum model. The
nonlinear model is defined in (9) and the feedback linearized model is defined in (12). The first step
is to discretize the linear model, which gives us the model in (23). Then we can use LQR to find
the controller that moves the discrete time linear model to the top, we can either use the reference
tracking version in (26) or the stabilizing version in (27). Here the initial state is [0, 0, 0, 0]T and the
target state is [π, π, 0, 0]T . Given the way we discretized the system, this discrete time controller
will also work on the continuous time model. Once we have the controller v for the linear system we
can calculate the corresponding controller for the nonlinear system τ using (14). The performance of
the resulting controller is shown in Figure 3. We can see that the double pendulum system behaves
like a single pendulum system, since the two links are always kept on the same line.
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Figure 4: Reference Tracking. The illustration on the left shows snapshots of double pendulum
along the trajectory. The snapshots are taken evenly spaced in time. The four plots on the right shows
the angle and angular velocity of the two links over time, the solid line denotes the actual trajectory
and the dashed line denotes the reference signal.

3.2 Reference Tracking

In this part of this report, we show the results of the feedback linearization controller on a reference
tracking task. To be specific, the reference signal that is tracked is

θ1 = 1.25 sin(2t) (29a)
θ2 = 1.25 cos(2t) (29b)

which implies that

θ̇1 = 2.5 cos(2t) (30a)

θ̇2 = −2.5 sin(2t). (30b)

The controller is implemented similar to the swing-up controller, the main difference is the LQR
controller is confined to the design in (26). The performance of the resulting controller is shown
in Figure 4. It can be seen, that despite the initial error, the controller made the system follow the
reference trajectory in less than 2 seconds. The initial state is

θ1(0)
θ2(0)

θ̇1(0)

θ̇2(0)

 =

1.25
0.25
0.00
0.00

 .
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