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1 Symmetric Matrices

We review some basic results concerning symmetric matrices. All matrices that we discuss are over the
real numbers.

Let A be a real, symmetric matrix of size d× d and let I denote the d× d identity matrix. Perhaps the
most important and useful property of symmetric matrices is that their eigenvalues behave very nicely.

Definition 1 Let U be a d × d matrix. The matrix U is called an orthogonal matrix if UTU = I.
This implies that UUT = I, by uniqueness of inverses.

Fact 2 (Spectral Theorem). Let A be any d × d symmetric matrix. There exists an orthogonal matrix
U and a (real) diagonal matrix D such that

A = UDUT.

This is called a spectral decomposition of A. Let ui be the ith column of U and let λi denote the ith
diagonal entry of D. Then {u1, . . . , ud} is an orthonormal basis consisting of eigenvectors of A, and λi
is the eigenvalue corresponding to ui. We can also write

A =

d∑
i=1

λiuiu
T
i . (1)

The eigenvalues λ are uniquely determined by A, up to reordering.

Caution. The product of two symmetric matrices is usually not symmetric.

1.1 Positive semi-definite matrices

Definition 3 Let A be any d × d symmetric matrix. The matrix A is called positive semi-definite
if all of its eigenvalues are non-negative. This is denoted A � 0, where here 0 denotes the zero matrix.
The matrix A is called positive definite if all of its eigenvalues are strictly positive. This is denoted
A � 0.

There are many equivalent characterizations of positive semi-definiteness. One useful condition is

A � 0 ⇐⇒ xTAx ≥ 0 ∀x ∈ Rd. (2)

Similarly,
A � 0 ⇐⇒ xTAx > 0 ∀x ∈ Rd

Another condition is: A � 0 if and only if there exists a matrix V such that A = V V T.

The positive semi-definite condition can be used to define a partial ordering on all symmetric matrices.
This is called the Löwner ordering or the positive semi-definite ordering. For any two symmetric
matrices A and B, we write A � B if A−B � 0.
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Fact 4 A � B if and only if vTAv ≥ vTBv for all vectors v.

Proof: Note that vTAv ≥ vTBv holds if and only if vT(A−B)v ≥ 0 holds. By (2), this is equivalent
to A−B � 0 which is the definition of A � B. 2

The set of positive semi-definite matrices is closed under addition and non-negative scaling. (Such a set
is called a convex cone.)

Fact 5 Let A and B be positive semi-definite matrices of size d × d. Let α, β be non-negative scalars.
Then αA+ βB � 0.

Proof: This follows easily from (2). 2

Caution. The Löwner ordering does not have all of the nice properties that the usual ordering of real
numbers has. For example, if A � B � 0 then it is not necessarily true that A2 � B2.

Fact 6 Let A and B be symmetric, d × d matrices and let C be any d × d matrix. If A � B then
CACT � CBCT. Moreover, if C is non-singular then the “if” is actually “if and only if”.

Proof: Since A � B, then A−B � 0, so there exists a matrix V such that V V T. Then

C(A−B)CT = CV V TCT = CV (CV )T,

which shows that C(A−B)CT is positive semi-definite.

Suppose that C is non-singular and CACT � CBCT. Multiply on the left by C−1 and on the right by
(C−1)T = (CT)−1 to get A � B. 2

1.2 Spectral Norm

Just as there are many norms of vectors, there are many norms of matrices too. We will only consider
spectral norm of A. (This is also called the `2 operator norm and the Schatten ∞-norm.)

Definition 7 Let A be a symmetric d× d matrix with eigenvalues λ1, . . . , λd. The spectral norm of A
is denoted ‖A‖ and is defined by ‖A‖ = maxi |λi|.

Recall that an eigenvalue of A is any real number z such that there exists a vector u for which Au = zu.
Then we also have (A+ tI)u = (z+ t)u, which implies that z+ t is an eigenvalue of A+ tI. In fact, the
entire set of eigenvalues of A+ tI is {λ1 + t, . . . , λd + t}.

Fact 8 Let A be a symmetric matrix. Let λmin and λmax respectively denote the smallest and largest
eigenvalues of A. Then λmin · I � A � λmax · I.

Proof: Let λ1, . . . , λd be all the eigenvalues of A. We will show only the second inequality, which is
equivalent to λmax · I −A � 0. As observed above, the eigenvalues of λmax · I −A are

{λmax − λ1, . . . , λmax − λd}.
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The minimum of these eigenvalues is

min
j

(
λmax − λj

)
= λmax −max

j
λj = 0.

So λmax · I −A � 0. 2

In particular, for any symmetric matrix A we have A � ‖A‖ · I.

1.3 Trace

Definition 9 Let A be an arbitrary d×d matrix (not necessarily symmetric). The trace of A, denoted
tr(A), is the sum of the diagonal entries of A.

Fact 10 (Linearity of Trace) Let A and B be arbitrary d × d matrices and let α, β be scalars. Then
tr(αA+ βB) = α tr(A) + β tr(B).

Fact 11 (Cyclic Property of Trace) Let A be an arbitrary n×m matrix and let B be an arbitrary m×n
matrix. Then tr(AB) = tr(BA).

Proof: This easily follows from the definitions. The ith diagonal entry of AB is
∑m

j=1Ai,jBj,i, so

tr(AB) =

n∑
i=1

m∑
j=1

Ai,jBj,i =

m∑
j=1

n∑
i=1

Bj,iAi,j ,

by swapping the order of summation. This equals tr(BA) because the jth diagonal entry of BA is∑n
i=1Bj,iAi,j . 2

Fact 12 Let A be a symmetric, d× d matrix with eigenvalues {λ1, . . . , λd}. Then tr(A) =
∑d

i=1 λd.

Proof: Let A = UDUT as in Fact 2. Then

tr(A) = tr(UDUT) = tr(UTUD) = tr(D) =
d∑

i=1

λi,

as required. 2

Claim 13 Let A, B and C be symmetric d× d matrices satisfying A � 0 and B � C. Then tr(AB) ≤
tr(AC).

Proof: Suppose additionally that A is rank-one, i.e., A = vvT for some vector v. Then

tr(AB) = tr(vvTB) = tr(vTBv) = vTBv

≤ vTCv = tr(vTCv) = tr(vvTC) = tr(AC).

Now we consider the case where A has arbitrary rank. Let A =
∑d

i=1 λiuiu
T
i . Since we assume that

A � 0 we can set vi =
√
λiui and write A =

∑d
i=1 viv

T
i . Then

tr(AB) = tr
(∑

i

viv
T
i B
)

=
∑
i

tr(viv
T
i B)

≤
∑
i

tr(viv
T
i C) = tr

(∑
i

viv
T
i C
)

= tr(AC).
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Here the second and third equalities are by linearity of trace, and the inequality follows from the
rank-one case. 2

Corollary 14 If A � 0 then tr(A ·B) ≤ ‖B‖ · tr(A).

Proof: Apply Claim 13 with C = ‖B‖ · I. We get

tr(A ·B) ≤ tr(A · ‖B‖ · I) ≤ ‖B‖ · tr(A · I),

by linearity of trace since ‖B‖ is a scalar. 2

1.4 Functions applied to matrices

For any function f : R → R, we can extend f to a function on symmetric matrices as follows. Let
A = UDUT be a spectral decomposition of A where λi is the ith diagonal entry of D. Then we define

f(A) = U

f(λ1)
. . .

f(λd)

UT.

In other words, f(A) is defined simplying by applying the function f to the eigenvalues of A.

Caution. f(A) is not obtained applying the function f to the entries of A!

One important example of applying a function to a matrix is powering. Let A be any positive semi-
definite matrix with spectral decomposition UDUT. For any c ∈ R we can define Ac as follows. Let S
be the diagonal matrix with Si,i = (Di,i)

c. Then we define Ac = USUT. For example, consider the case
c = 1/2. Note that

A1/2 ·A1/2 = USUT · USUT = USSUT = UDUT = A.

So the square of the square root is the matrix itself, as one would expect. If A is non-singular, the matrix
A−1 obtained by taking c = −1 is the same as the usual matrix inverse (by uniqueness of inverses, since
A−1 · A = I). So we see that the inverse of a non-singular symmetric matrix is obtained by inverting
its eigenvalues.

Inequalities on real-valued functions also give us inequalities on matrices.

Claim 15 Let f : R → R and g : R → R satisfy f(x) ≤ g(x) for all x ∈ [l, u] ⊂ R. Let A be a
symmetric matrix for which all eigenvalues lie in [l, u] (i.e., lI � A � uI). Then f(A) � g(A).

Proof: Let A = UDUT be a spectral decomposition of A where λi is the ith diagonal entry of D. We
wish to show f(A) � g(A), i.e., g(A)− f(A) � 0. By (2), this is equivalent to

vTU

g(λ1)− f(λ1)
. . .

g(λd)− f(λd)

Uv ≥ 0 ∀v ∈ Rd.

Since U is non-singular this is equivalent to

wT

g(λ1)− f(λ1)
. . .

g(λd)− f(λd)

w ≥ 0 ∀w ∈ Rd,

where we have simply replaced w = Uv. The left-hand side is simply
∑

iw
2
i

(
g(λi) − f(λi)

)
, which is

non-negative by our assumptions on g, f and the λi’s. 2
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1.5 The pseudoinverse

Sometimes we would like to invert a matrix which is not quite invertible. A useful alternative is to
invert the part of the matrix that is invertible (its image) and to leave alone the part of the matrix that
is not invertible (its kernel).

We can do this by applying the real-valued function:

f(x) =

{
1/x (x 6= 0)

0 (x = 0)
.

The function f inverts all non-zero numbers and maps 0 to 0. So if we apply f to a symmetric matrix,
all non-zero eigenvalues will be inverted, and the zero eigenvalues will remain unchanged. The resulting
matrix is called the pseudoinverse and is denoted A+. If A is indeed invertible then A+ = A−1.

Suppose A is not invertible. We cannot have A ·A+ = I since I has full rank and A does not. However,
we have the next best thing: A · A+ is the identity operator on the image of A. More precisely A · A+

is the orthogonal projection onto the image of A, which we denote Iim A. In other words, for every v in
the image of A, we have A ·A+ v = v and for every v in the kernel of A we have A ·A+ v = 0.

Claim 16 Let A and B1, . . . , Bk be symmetric, positive semi-definite matices of the same size. Let
A+/2 = (A+)1/2 denote the square root of the pseudoinverse of A. Let ` and u be arbitrary scalars.
Suppose that im(Bi) is a subspace of im(A) for all i. Then

`A �
k∑

i=1

Bi � uA ⇐⇒ `Iim A �
k∑

i=1

A+/2BiA
+/2 � uIim A

Proof: =⇒: Since A+/2AA+/2 = Iim A, this follows from Fact 6.

⇐=: This also follows from Fact 6, because

A1/2Iim AA
1/2 = A

and
A1/2A+/2BiA

+/2A1/2 = Iim ABiIim A = Iim BiBiIim Bi = Bi,

where the second equality follows from the assumption that im(Bi) ⊆ im(A). 2

1.6 Matrix exponentials

We will mainly be interested in the case f(x) = ex. For any symmetric matrix A, note that eA is
positive semi-definite. Whereas in the scalar case ea+b = eaeb holds, it is not necessarily true in the
matrix case that eA+B = eA · eB. It turns out that there is a useful inequality along these lines. It is
called the Golden-Thompson inequality.

Theorem 17 (Golden-Thompson Inequality) Let A and B be symmetric d × d matrices. Then
tr(eA+B) ≤ tr(eA · eB).
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