
Walking motion generation Notes

Bolun Dai (bd1555@nyu.edu)

1 Introduction

Running a biped robot is achieved by solving a series of optimization problems during execution. For
simple cases this can be realized at a relatively high frequency. However, when the optimization problem
gets larger, such as for higher order systems or having nonlinear constraints, the solution takes longer to
obtain. This impairs the ability for the robot to react to sudden changes in its trajectory, e.g., a push.
This work first utilizes learning-based methods in a supervised learning approach to learn the solution of
a convex optimizer.

The remainder of this paper is structured as follows: in Section II a commonly used simplified model
for bipedal locomotion, namely the linear inverted pendulum model (LIPM) is presented, and simplifica-
tions for walking on a flat ground is given; in section III we show how to plan the CoM, CoP and foot
step sequences using MPC. The code for what this note is talking about can be found in this GitHub
Repository (click me) and a video showing the results can be found on YouTube.

2 Linear Inverted Pendulum Model

First, the derivation of the relationship between the center of mass (CoM) and the center of pressure
(CoP) is given. We start from the Newton-Euler equations

mc̈ =
∑
i

fi −mg (Newton′s Equation) (1)

L̇ =
∑
i

(pi − c)× fi, (Euler′s Equation) (2)

where the mass is m, the position of the center of mass (CoM) is c, the angular momentum of the CoM
is L, pi is the of where force fi is applied. The derivation is as follow:

mc× (c̈+ g) =
∑
i

c× fi the cross product of c and (1)

mc× (c̈+ g) + L̇ =
∑
i

c× fi +
∑
i

(pi − c)× fi add (2) on both sides

mc× (c̈+ g) + L̇ =
∑
i

pi × fi

mc× (c̈+ g) + L̇

m(c̈z + gz)
=

∑
i pi × fi

m(c̈z + gz)
divide both sides with m(c̈z + gz)

1

(c̈z + gz)

cy(c̈z + g)− cz c̈y
cz c̈x − cx(c̈z + g)
cxc̈y − cy c̈x

 =
∑
i

1

m(c̈z + gz)

pyi fzi − pzi fyi − L̇xpzi f
x
i − pxi fzi − L̇y

pxi f
y
i − p

y
i f

x
i − L̇z


1

(c̈z + gz)

cy(c̈z + g)− cz c̈y
cz c̈x − cx(c̈z + g)
cxc̈y − cy c̈x

 =
∑
i

1

m(c̈z + gz)

 pyi f
z
i − L̇x

−pxi fzi − L̇y
pxi f

y
i − p

y
i f

x
i − L̇z

 . fi’s are applied on the ground (pzi = 0)

This gives us

1

(c̈z + gz)

cy(c̈z + g)− cz c̈y
cz c̈x − cx(c̈z + g)
cxc̈y − cy c̈x

 =
∑
i

1∑
i f

z
i

 pyi f
z
i

−pxi fzi
pxi f

y
i − p

y
i f

x
i

+
1

m(c̈z + gz)

L̇xL̇y
L̇z

,

which rewrites m(c̈z + gz) as
∑
i f

z
i . If we only look at the x and y components of the above equation

we have

1

https://github.com/BolunDai0216/BipedFootStepPlanning
https://github.com/BolunDai0216/BipedFootStepPlanning
https://github.com/BolunDai0216/BipedFootStepPlanning



cx − cz

(c̈z + gz)
c̈y +

1

m(c̈z + gz)
L̇y =

∑
i p
x
i f

z
i∑

i f
z
i

= px

cy − cz

(c̈z + gz)
c̈y − 1

m(c̈z + gz)
L̇x =

∑
i p
y
i f

z
i∑

i f
z
i

= py

Which in matrix form is

cx,y − cz

(c̈z + gz)
c̈x,y +

1

m(c̈z + gz)

[
0 −1
1 0

]
L̇x,y = px,y (3)

where

cx,y =

[
cx

cy

]
, Lx,y =

[
Lx

Ly

]
, px,y =

[
px

py

]
.

Under the assumptions

c̈z = 0 not jumping

L̇x,y = 0, no huge rotations

we can write (3) as

cx,y − cz

gz
c̈x,y = px,y. (4)

This is know as the linearly inverted pendulum model (LIPM). If we treat the CoP location px,y as the
control input we can have the dynamical system as

c̈x,y =
gz

cz
cx,y − gz

cz
px,y. (5)

Equation (5) can be written as
ċx

ċy

c̈x

c̈y

 =


0 0 1 0
0 0 0 1

gz/cz 0 0 0
0 gz/cz 0 0



cx

cy

ċx

ċy

+


0 0
0 0

gz/cz 0
0 gz/cz

[ṗxṗy
]
. (6)

3 Biped Walking Problem

3.1 Motion of the Center of Mass

For the biped walking we use a dynamic model where the input is jerk. The relationship between position,
velocity, acceleration and jerk is

J(t) = J (7a)

a(t) = Jt+ a0 (7b)

v(t) =
1

2
Jt2 + a0t+ v0 (7c)

x(t) =
1

6
Jt3 +

1

2
a0t

2 + v0t+ x0. (7d)

Thus, if we set the state to be

x̂k =

x(tk)
ẋ(tk)
ẍ(tk)

 , (8)

then we can write the dynamic system as

x(tk+1)
ẋ(tk+1)
ẍ(tk+1)

 =


1

6
Jt3 +

1

2
a0t

2 + v0t+ x0
1

2
Jt2 + a0t+ v0

Jt+ a0

.

2



Since we can write J as
...
x then we have a linear system x̂k+1 = Ax̂k +B

...
x k,x(tk+1)

ẋ(tk+1)
ẍ(tk+1)

 =

1 t t2/2
0 1 t
0 0 1

x(tk)
ẋ(tk)
ẍ(tk)

+

t3/6t2/2
t

 ...
x , (9)

the same goes for y. Using the new state we can rewrite (4) as

pxk =
[
1 0 −cz/gz

]
x̂k (10a)

pyk =
[
1 0 −cz/gz

]
ŷk. (10b)

Now we would like to write the future states {
[
xk+i ẋk+i ẍk+i

]T }Ni=1 as functions of the current state
x̂k and future jerks

...
x j , j = k, · · · , k +N − 1. Starting from

x̂k+1 = Ax̂k +B
...
x (tk)

we can have the following result,

x̂k+2 = Ax̂k+1 +B
...
x (tk + 1)

= A2x̂k +AB
...
x (tk) +B

...
x (tk + 1)

x̂k+3 = Ax̂k+2 +B
...
x (tk + 2)

= A3x̂k +A2B
...
x (tk) +AB

...
x (tk + 1) +B

...
x (tk + 2)

...

x̂k+N = Ax̂k+N−1 +B
...
x (tk+N−1)

= AN x̂k + [AN−1B
...
x (tk) +AN−2B

...
x (tk + 1) + · · ·+B

...
x (tk+N−1)].

We can see that

An =

1 nt (n2/2)t2

0 1 nt
0 0 1

 . (11)

To prove this we can write

A = I + tI ′ +
t2

2
I ′′ =

1 0 0
0 1 0
0 0 1

+ t

0 1 0
0 0 1
0 0 0

+
t2

2

0 0 1
0 0 0
0 0 0

 . (12)

Using the following properties

I ′I ′ = I ′′

I ′′I ′′ = 0

I ′I ′′ = I ′′I ′ = 0,

we can have

A2 = (I + tI ′ +
t2

2
I ′′)(I + tI ′ +

t2

2
I ′′)

= (I + tI ′ +
t2

2
I ′′) + (tI ′ + t2I ′′ + 0) + (

t2

2
I ′′ + 0 + 0)

= I + 2tI ′ +
4

2
t2I ′′

=

1 2t (22/2)t2

0 1 2t
0 0 1

 .

3



If we have Ak satisfying (11) we can have

Ak+1 = (I + ktI ′ +
k2

2
t2I ′′)(I + tI ′ +

t2

2
I ′′)

= (I + tI ′ +
t2

2
I ′′) + (ktI ′ + kt2I ′′ + 0) + (

k2

2
t2I ′′ + 0 + 0)

= I + (k + 1)tI ′ + (
1

2
+ k +

k2

2
)t2I ′′

= I + (k + 1)tI ′ +
k2 + 2k + 1

2
t2I ′′

=

1 (k + 1)t [(k + 1)2/2]t2

0 1 (k + 1)t
0 0 1

 .
Thus we can say if Ak satisfies (11), then Ak+1 also satisfies (11).

We want to write We can have

x̂k+m = Amx̂k + [Am−1B
...
x (tk) +Am−2B

...
x (tk + 1) + · · ·+B

...
x (tk+m−1)]

=

1 mt (m2/2)t2

0 1 mt
0 0 1

x(tk)
ẋ(tk)
ẍ(tk)

+

(Am−1B)1
(Am−1B)2
(Am−1B)3

 ...
x (tk) + · · ·+

B1

B2

B3

 ...
x (tm − 1).

Therefore, we have

xk+m =
[
1 mt (m2/2)t2

]
x̂k +

[
(Am−1B)1 · · · B1

] 
...
x (tk)

...
...
x (tm − 1)


ẋk+m =

[
0 1 mt

]
x̂k +

[
(Am−1B)2 · · · B2

] 
...
x (tk)

...
...
x (tm − 1)


ẍk+m =

[
0 0 1

]
x̂k +

[
(Am−1B)3 · · · B3

] 
...
x (tk)

...
...
x (tm − 1)

 .
Therefore we have Sp, Sv, Sa ∈ Rn×3,

Sp =

1 T T 2/2
...

...
...

1 nT (n2/2)T 2

, Sv =

0 1 T
...

...
...

0 1 nT

 and Sa =

0 0 1
...

...
...

0 0 1

,

and Up, Uv, Ua ∈ Rn×n,

Up =

 B1 · · · 0
...

. . .
...

(AN−1B)1 · · · B1

, Uv =

 B2 · · · 0
...

. . .
...

(AN−1B)2 · · · B2

 and Ua =

 B3 · · · 0
...

. . .
...

(AN−1B)3 · · · B3

,

with

AkB =


1

6
t3 +

k

2
t3 +

k2

2
t3

1

2
t2 + kt2

t

 =

(AkB)1
(AkB)2
(AkB)3

,

4



and B = A0B. Using the aforementioned matrices we can have the following relationship

Xk+1 =

xk+1

...
xk+N

 = Spx̂k + Up
...
Xk

Ẋk+1 =

 ẋk+1

...
ẋk+N

 = Svx̂k + Uv
...
Xk

Ẍk+1 =

 ẍk+1

...
ẍk+N

 = Sax̂k + Ua
...
Xk

...
Xk =


...
x k
...

...
x k+N−1

 .
3.2 Motion of the Center of Pressure

Also we can write the relationship between x̂k,
...
Xk and the CoP

Zxk+1 =

 z
x
k+1
...

zxk+N

 = Szx̂k + Uz
...
Xk (13)

with Sz ∈ Rn×3 and Uz ∈ Rn×n

Sz = Sp −
h

g
Sa (14a)

Uz = Up −
h

g
Ua. (14b)

We can see that this makes sense by inputting (14) to (13)

Szx̂k + Uz
...
Xk = (Sp −

h

g
Sa)x̂k + (Up −

h

g
Ua)

...
Xk

= Spx̂k + Up
...
Xk −

h

g
Sax̂k −

h

g
Ua

...
Xk

= Xk+1 −
h

g
Ẍk+1,

which is a vector version of (4)

3.3 Motion of the feet on the ground

Instead of pre-defining the foot step locations we would like to optimize it on the fly. To do this we
introduce new decision variables to the optimization problem Xf

k , Y
f
k ∈ Rm which represents the foot

step location of the next m foot steps,

Xf
k =

 (Xf
k )1
...

(Xf
k )m

 and Y fk =

 (Y fk )1
...

(Y fk )m

,

where the location the next l-th foot step is
(

(Xf
k )l, (Y

f
k )l

)
. This also provides an adapting reference to

the CoP

Zxref

k+1 = U ck+1X
fc
k + Uk+1X

f
k (15a)

Zyrefk+1 = U ck+1Y
fc
k + Uk+1Y

f
k . (15b)

Define 1m and 0m which denotes column vectors of 1 and 0 with dimension m, respectively. We have

5



Figure 1: Illustration of CoP Constraint.

U ck+1 =


1m
0M

...
0N−m−lm

 ∈ RN and Uk+1 =


0m · · · 0m
1M · · · 0M

...
. . .

...
0N−m−lm · · · 1N−m−lm

 ∈ RN×l

where in the preview horizon N we can look into the future l steps where each step has M time steps,
the remaining time steps in the current foot step is m.

3.4 Constraints on the Center of Pressure

Because of trajectories with CoP outside of the support polygon cannot be realized we would need to
constraint it to be inside. One way to write this is with s ∈ {left, right}

[
dxs (fθ) dys(fθ)

] [zx − fx
zy − fy

]
≤ b(fθ). (16)

The column vectors dxs (fθ) and dys(fθ) gather the x and y coordinates the normal vector to the edges
of the feet. As illustrated in Figure 1 if we have a rectangle shaped feet its four edges has the normal
vectors

~d1 =
[
1 0

]
, ~d2 =

[
0 −1

]
, ~d3 =

[
−1 0

]
and ~d4 =

[
0 1

]
.

The vector b(fθ) ∈ Re, where e denotes the number of edges, records the perpendicular distance between
the center of the foot [fx fy] and the edges. If we take the inner product of the normal vector of the i-th
edge and the vector between the center of the foot and the CoP position [zx zy] we can get it projection
on the normal vector direction(

~di

)T [zx − fx
zy − fy

]
= ‖~di‖‖~zx,y‖ cosφ = ‖~zx,y‖ cosφ,

where ‖~di‖ = 1, ‖~zx,y‖ = [(zx − fx), (zy − fy)]T , and φ is the angle between ‖~zx,y‖ and ‖~di‖. If the
length of this projection is less the perpendicular distance to the edge then the CoP is definitely within
the support polygon. The θ takes the orientation of the support polygon into consideration, for example
is we take the rectangular foot in Figure 1 and rotate it 45◦ clockwise the normal vectors will also be
rotated 45◦ clockwise. In matrix form we have

Dk+1

[
Zxk+1 − U ck+1X

fc
k − Uk+1X

f
k

Zyk+1 − U ck+1Y
fc
k − Uk+1Y

f
k

]
≤ bk+1, (17)

6



Figure 2: CoP constraint for the initial double support phase.

with Dk+1 ∈ ReN×2N and bk+1 ∈ ReN×1

Dk+1 =

d
x
si+1

(fθi+1) · · · 0 dysi+1
(fθi+1) · · · 0

...
. . .

...
...

. . .
...

0 · · · dxsi+N
(fθi+N ) 0 · · · dysi+N

(fθi+N )

 (18a)

bk+1 =

 b(f
θ
i+1)
...

b(fθi+N )

 . (18b)

Using (15) we can write terms in (17) as

Zxk+1 − U ck+1X
fc
k − Uk+1X

f
k = Szx̂k + Uz

...
Xk − U ck+1X

fc
k − Uk+1X

f
k

=


Uz
−Uk+1

0
0


T 

...
Xk

Xf
k...

Y k
Y fk

+ Szx̂k − U ck+1X
fc
k .

Thus we can write (17) as

Dk+1

[
Uz −Uk+1 0 0
0 0 Uz −Uk+1

]
...
Xk

Xf
k...

Y k
Y fk

 ≤ bk+1 +Dk+1

[
U ck+1X

fc
k − Szx̂k

U ck+1Y
fc
k − Sz ŷk

]
. (19)

3.5 Constraints on the Center of Pressure for Initial Double Support Phase

Starting from (17) we have

Dk+1

[
Zxk+1 − U ck+1X

fc
0 − Uk+1[:, :1]Xfc

1 − Uk+1[:, 1:]Xf
1

Zyk+1 − U ck+1Y
fc
0 − Uk+1[:, :1]Y fc1 − Uk+1[:, 1:]Y f1

]
≤ bk+1. (20)

To understand (20), we need to first figure out where the center of the support polygon is for the initial
double support phase and the subsequent single support phase. For the initial double support phase, as
shown in Fig. 2, the center of the support polygon is the mid-point of the two feet (Xfc

0 , Y fc0 ), which
can be set to (0, 0). If first lifting the right foot, then the subsequent single support phase will have the

center of the support polygon at the center of the left foot (Xfc
1 , Y fc1 ). The remaining foot step positions

are subject to the optimization algorithm, therefore, Xf
1 and Y f1 are part of the decision variable. The

7



terms in the matrix can be written as

Zxk+1 − U ck+1X
fc
0 − Uk+1[:, :1]Xfc

1 − Uk+1[:, 1:]Xf
1

= Szx̂k + Uz
...
Xk − U ck+1X

fc
0 − Uk+1[:, :1]Xfc

1 − Uk+1[:, 1:]Xf
1

= Uz
...
Xk − Uk+1[:, 1:]Xf

1 + Szx̂k − U ck+1X
fc
0 − Uk+1[:, :1]Xfc

1

=


Uz

−Uk+1[:, 1:]

0
0


T 

...
Xk

Xf
1...

Y k
Y f1

+ Szx̂k − U ck+1X
fc
0 − Uk+1[:, :1]Xfc

1 .

Thus we can write (20) as

Dk+1

[
Uz −Uk+1[:, 1:] 0 0
0 0 Uz −Uk+1[:, 1:]

]
...
Xk

Xf
1...

Y k
Y f1


≤ bk+1 +Dk+1

[
U ck+1X

fc
0 + Uk+1[:, :1]Xfc

1 − Szx̂k
U ck+1Y

fc
0 + Uk+1[:, :1]Y fc1 − Sz ŷk

]

≤ bk+1 +Dk+1

[
Uk+1[:, :1]Xfc

1 − Szx̂k
Uk+1[:, :1]Y fc1 − Sz ŷk

]
, assuming (Xfc

0 , Y fc0 ) = (0, 0)

(21)

where

D̃α
k+1 =

d̃
α
si+1

(fθi+1) · · · 0
...

. . .
...

0 · · · d̃αsi+m
(fθi+m)

 (22)

Dα
k+1 =

d
α
si+m+1

(fθi+m+1) · · · 0
...

. . .
...

0 · · · dαsi+N
(fθi+N )

 (23)

Dk+1 =

[
D̃x
k+1 0 D̃y

k+1 0
0 Dx

k+1 0 Dy
k+1

]
(24)

bk+1 =



b̃(fθi+1)
...

b̃(fθi+m)
b(fθi+m+1)

...
b(fθi+N )


, (25)

with d̃αsi+1
(fθi+1) denoting the normal vectors of the edges for the initial double support support polygon,

dαsi+m+1
(fθi+m+1) denoting the normal vectors of the edges for the single support support polygon, b̃(fθi+1)

denotes the maximum distance between the CoP and the center of the support polygon along each of the
normal vectors for the initial double support support polygon and b(fθi+m+1) is its counterpart for the
subsequent single support phase.

3.6 Constraints on Foot Step Placements

As mentioned in [1] and [2] the foot step constraint has two parts. The first part is to limit the next
footstep position within a convex hull of the position of the current foot step. The second part is limiting
the next footstep within a region with respect to the foot in the air. One thing about the first part of the
constraint is in both [1] and [2], a clear explanation was not provided. However, in [3] the authors gave a
understandable explanation, therefore the following constraints will be derived using their interpretation.

3.6.1 Foot Placement w.r.t. Support Foot

One thing to note is that no matter the support foot being the left foot or the right foot, the feasible
positions for the next foot (the convex hulls) are symmetric and the normal vectors to the edges of the
convex hull are also symmetric

8



Figure 3: Illustration of foot placement constraint.

Figure 4: Constraint w.r.t. support foot

pli = −pri ,

note using this definition the convex hull of the right foot is not obtained by flipping the convex hull of
the left foot along the x-axis, but is obtained by rotating the convex hull of the left foot with respect to
the origin clockwise 180◦. Here the subscript i = 1, 2, 3, 4, 5, denoting the i-th edge of the feasible region.
The superscript {l, r} denote the left and right foot.

Similar to (16), the constraints are expressed in a form where the projection of the next foot step position
on all of the normal vector of the feasible region edges are less than the perpendicular distance between
the edges and the current support foot center position. For the convex hull defined in Figure 3 the foot
placement constraint has the form of[

(pli)
x
j+1 (pli)

y
j+1

] [fxj+1 − fxj
fyj+1 − f

y
j

]
≤ (bli)j+1, (26)

where the k denotes the k-th time step, the k-th time step falls within the j-th foot step, therefore the

9



Table 1: Edges & Normal Vectors

Foot Edge 1 Edge 2 Line Vector Normal Vector Distance

Left

(−0.30, 0.15) (−0.20, 0.30) (2/
√

13, 3/
√

13) (−3/
√

13, 2/
√

13) 6/5
√

13

(−0.20, 0.30) (0.00, 0.40) (2/
√

5, 1/
√

5) (−1/
√

5, 2/
√

5) 4/5
√

5
(0.30, 0.15) (−0.30, 0.15) (1, 0) (0,−1) −0.15

(0.00, 0.40) (0.20, 0.30) (2/
√

5,−1/
√

5) (1/
√

5, 2/
√

5) 4/5
√

5

(0.20, 0.30) (0.30, 0.15) (2/
√

13,−3/
√

13) (3/
√

13, 2/
√

13) 6/5
√

13

Right

(−0.30,−0.15) (−0.20,−0.30) (2/
√

13,−3/
√

13) (−3/
√

13,−2/
√

13) 6/5
√

13

(−0.20,−0.30) (0.00,−0.40) (2/
√

5,−1/
√

5) (−1/
√

5,−2/
√

5) 4/5
√

5
(0.30,−0.15) (−0.30,−0.15) (−1, 0) (0, 1) −0.15

(0.00,−0.40) (0.20,−0.30) (2/
√

5, 1/
√

5) (1/
√

5,−2/
√

5) 4/5
√

5

(0.20,−0.30) (0.30,−0.15) (2/
√

13, 3/
√

13) (3/
√

13,−2/
√

13) 6/5
√

13

subscripts for the edges and perpendicular distances are w.r.t. to the j-th foot step. Figure 3 is just for
illustration, Figure 4 is the actual constraint we use and the edges, vectors and distances are recorded in
Table 2. One exception is for (pl3)j+1 we would like to have[

(pl3)xj+1 (pl3)yj+1

] [fxj+1 − fxj
fyj+1 − f

y
j

]
≥ (bl3)j+1 or −

[
(pl3)xj+1 (pl3)yj+1

] [fxj+1 − fxj
fyj+1 − f

y
j

]
≤ −(bl3)j+1,

where (bli)j+1 ≥ 0 is perpendicular distance between the support foot center and the i-th feasible region
edge for the (j + 1)-th foot step. Similarly we have

[
(pri )

x
j+1 (pri )

y
j+1

] [fxj+1 − fxj
fyj+1 − f

y
j

]
≤ (bri )j+1, (27)

and [
(pr3)xj+1 (pr3)yj+1

] [fxj+1 − fxj
fyj+1 − f

y
j

]
≥ (br3)j+1 or −

[
(pr3)xj+1 (pr3)yj+1

] [fxj+1 − fxj
fyj+1 − f

y
j

]
≤ −(br3)j+1.

Note we have (bli)j+1 = (bri )j+1. In matrix form we have
(pl1)xj+1 (pl1)yj+1

(pl2)xj+1 (pl2)yj+1

−(pl3)xj+1 −(pl3)yj+1

(pl4)xj+1 (pl4)yj+1

(pl5)xj+1 (pl5)yj+1


[
fxj+1 − fxj
fyj+1 − f

y
j

]
≤


(bl1)j+1

(bl2)j+1

−(bl3)j+1

(bl4)j+1

(bl5)j+1

,

and 
(pr1)xj+1 (pr1)yj+1

(pr2)xj+1 (pr2)yj+1

−(pr3)xj+1 −(pr3)yj+1

(pr4)xj+1 (pr4)yj+1

(pr5)xj+1 (pr5)yj+1


[
fxj+1 − fxj
fyj+1 − f

y
j

]
≤


(br1)j+1

(br2)j+1

−(br3)j+1

(br4)j+1

(br5)j+1


To write this constraint w.r.t. the decision variables

[...
Xk Xf

k

...
Y k Y fk

]T
we have

(pl1)xj+1 (pl1)yj+1

(pl2)xj+1 (pl2)yj+1

−(pl3)xj+1 −(pl3)yj+1

(pl4)xj+1 (pl4)yj+1

(pl5)xj+1 (pl5)yj+1


[
fxk+1 − fxk
fyk+1 − f

y
k

]
≤


(bl1)j+1

(bl2)j+1

−(bl3)j+1

(bl4)j+1

(bl5)j+1




(pl1)xj+1 (pl1)yj+1

(pl2)xj+1 (pl2)yj+1

−(pl3)xj+1 −(pl3)yj+1

(pl4)xj+1 (pl4)yj+1

(pl5)xj+1 (pl5)yj+1


[
−1 1 0 0
0 0 −1 1

]
fxk
fxk+1

fyk
fyk+1

 ≤


(bl1)j+1

(bl2)j+1

−(bl3)j+1

(bl4)j+1

(bl5)j+1

 .
We can simplify the inequality above by defining

10



Gl
j+1 =


(pl1)xj+1 (pl1)yj+1

(pl2)xj+1 (pl2)yj+1

−(pl3)xj+1 −(pl3)yj+1

(pl4)xj+1 (pl4)yj+1

(pl5)xj+1 (pl5)yj+1

 =
[
gx,lj+1 gy,lj+1

]
and blj+1 =


(bl1)j+1

(bl2)j+1

−(bl3)j+1

(bl4)j+1

(bl5)j+1

.

Therefore we have

Gl
j+1

[
−1 1 0 0
0 0 −1 1

]
fxj
fxj+1

fyj
fyj+1

 ≤ blj+1.

Note that we have

(Gl
j+1)y = −(Gr

j+1)y and blj+1 = brj+1,

therefore we use bj+1 instead of specifying whether it is w.r.t the left or right foot. If we consider the
next two steps we have (assuming the next step is moving the left foot)

[
gx,lj+1 0 gy,lj+1 0

0 gx,rj+2 0 gy,rj+2

]
−1 1 0 0 0 0
0 −1 1 0 0 0
0 0 0 −1 1 0
0 0 0 0 −1 1




fxj
fxj+1

fxj+2

fyj
fyj+1

fyj+2

 ≤
[
bj+1

bj+2

]
,

if we define

M =


−1 1 0 0 0 0
0 −1 1 0 0 0
0 0 0 −1 1 0
0 0 0 0 −1 1

, fx,yj = fx,yk , {X,Y }fk =

[
fx,yj+1

fx,yj+2

]
,

where fx,yj is the current foot step position while also being the foot step position at the current time

step thus we can change the subscript to represent the k-time step, {X,Y }fk denotes the planned future
foot steps at the k-th time step. Using this definition we have

Gj+1M


fxk
F̃ xk
fyk
F̃ yk

 ≤ bj+1

Gj+1M

(
0

Xf
k

0

Y fk

+


fxk
0
fyk
0


)
≤ bj+1

Gj+1M


0

Xf
k

0

Y fk

 ≤ bj+1 −Gj+1M


fxk
0
fyk
0



Gj+1M


0

Xf
k

0

Y fk

 ≤ bj+1 + Gj+1


fxk
0
fyk
0

 ,

11



with Gj+1 ∈ R10×4 and bj+1 ∈ R10×1 for a two step preview horizon. One observation to make is

M


0

F̃ xk
0

F̃ yk

 =


−1 1 0 0 0 0
0 −1 1 0 0 0
0 0 0 −1 1 0
0 0 0 0 −1 1




0

Xf
k

0

Y fk



=


01×N 1 0 01×N 0 0
01×N −1 1 01×N 0 0
01×N 0 0 01×N 1 0
01×N 0 0 01×N −1 1




...
Xk

Xf
k...

Y k
Y fk



= M̃


...
Xk

Xf
k...

Y k
Y fk

 ,
with M̃ ∈ R4×2N+4 for a two step preview horizon. Using the associative property of matrix multipli-
cation, ABC = A(BC) = A(B̃C̃) if (BC) = (B̃C̃), we can write the foot placement constraint w.r.t.
support foot as

Gj+1M̃


...
Xk

Xf
k...

Y k
Y fk

 ≤ bj+1 + Gj+1


fxk
0
fyk
0

 (28)

3.6.2 Foot Placement w.r.t. Support Foot for Initial Double Support Phase

Since the current and second foot step are already determined, all that needs to be constrained are the
third and subsequent foot steps. Thus, by altering (28) we can have

Gj+1M̃


...
Xk

Xf
1...

Y k
Y f1

 ≤ bj+1 + Gj+1


fx1
0
fy1
0

 . (29)

If we first lift the right foot we should have (29) as

[
gx,rj+1 0 gy,rj+1 0

0 gx,lj+2 0 gy,lj+2

]
fx2 − fx1
fx3 − fx2
fy2 − f

y
1

fy3 − f
y
2

 ≤ [b2

b3

]

[
gx,rj+1 0 gy,rj+1 0

0 gx,lj+2 0 gy,lj+2

]
−1 1 0 0 0 0
0 −1 1 0 0 0
0 0 0 −1 1 0
0 0 0 0 −1 1



fx1
fx2
fx3
fy1
fy2
fy3

 ≤
[
b2

b3

]

G1M

(


0
fx2
fx3
0
fy2
fy3

+


fx1
0
0
fy1
0
0


)
≤
[
b2

b3

]

G1M


0
fx2
fx3
0
fy2
fy3

 ≤
[
b2

b3

]
−G1M


fx1
0
0
fy1
0
0

 .

We have

12



G1M


fx1
0
0
fy1
0
0

 = G1

(
−1 1 0 0 0 0
0 −1 1 0 0 0
0 0 0 −1 1 0
0 0 0 0 −1 1



fx1
0
0
fy1
0
0


)

= −G1


fx1
0
fy1
0

,

and

M


0
fx2
fx3
0
fy2
fy3

 =


−1 1 0 0 0 0
0 −1 1 0 0 0
0 0 0 −1 1 0
0 0 0 0 −1 1




0
fx2
fx3
0
fy2
fy3



=


01×N 1 0 01×N 0 0
01×N −1 1 01×N 0 0
01×N 0 0 01×N 1 0
01×N 0 0 01×N −1 1




...
X1

fx2
fx3...
Y 1

fy2
fy3



= M̃



...
X1

fx2
fx3...
Y 1

fy2
fy3

 .

Therefore, the support feet constraint becomes

G1M̃



...
X1

fx2
fx3...
Y 1

fy2
fy3

 ≤
[
b2

b3

]
+ G1


fx1
0
fy1
0



3.6.3 Foot Placement w.r.t. Swing Foot

The constraint on the foot placement w.r.t. the swing foot simply ensures the next foot step is at a
position that is feasible for the swing foot to reach given its current position and the maximum end-
effector velocity moving forward[

nxs nys
nxf nyf

] [
(Xf

k )1 − xf (t)

(Y fk )1 − yf (t)

]
≤ trvmax = tr

[
‖vs‖max

‖vf‖max

]
, (30)

where the next foot step position is [(Xf
k )1, (Y

f
k )1], the current position of the swing foot is [xf (t), yf (t)],

the time remaining in this foot step cycle is tr, the maximum end-effector forward velocity is vmax,
nx,y represent the vector of the velocity direction, where s represents the sagittal plane direction and f
represents the frontal plane direction, ‖vs‖max and ‖vf‖max represents the maximum speed in the sagittal

and frontal plane, respectively. Also writing in the form of decision variables
[...
Xk Xf

k

...
Y k Y fk

]T
we

have [
nxs nys
nxf nyf

] [
(Xf

k )1 − xf (t)

(Y fk )1 − yf (t)

]
≤ tr

[
‖vs‖max

‖vf‖max

]
[
nxs nys
nxf nyf

] [
(Xf

k )1
(Y fk )1

]
≤ tr

[
‖vs‖max

‖vf‖max

]
+

[
nxs nys
nxf nyf

] [
xf (t)
yf (t)

]

[
01×N nxs 0 01×N nys 0
01×N nxf 0 01×N nyf 0

]


...
Xk

(Xf
k )1

(Xf
k )2...
Y k

(Y fk )1
(Y fk )2


≤ tr

[
‖vs‖max

‖vf‖max

]
+

[
nxs nys
nxf nyf

] [
xf (t)
yf (t)

]
.

13



which gives us

[
01×N nxs 0 01×N nys 0
01×N nxf 0 01×N nyf 0

]
...
Xk

Xf
k...

Y k
Y fk

 ≤ tr [‖vs‖max

‖vf‖max

]
+

[
nxs nys
nxf nyf

] [
xf (t)
yf (t)

]
, (31)

with [
01×N nxs 0 01×N nys 0
01×N nxf 0 01×N nyf 0

]
∈ R2×2N+4,

for a two step preview horizon.

3.6.4 Foot Placement w.r.t. Swing Foot for Initial Double Support Phase

Since during the double support phase there is no swing foot, we would not require this constraint.

3.7 Cost Function

The cost function in use is from [2]

min
uk

α

2
‖

...
Xk‖2 +

β

2
‖Ẋk+1 − Ẋref

k+1‖2 +
γ

2
‖Zxk+1 − Z

xref

k+1‖
2

+
α

2
‖

...
Y k‖2 +

β

2
‖Ẏk+1 − Ẏ ref

k+1‖2 +
γ

2
‖Zyk+1 − Z

yref
k+1‖

2.

(32)

To understand the meaning of (32) we can separate it into three parts. The first part

min
uk

β

2
‖Ẋk+1 − Ẋref

k+1‖2 +
β

2
‖Ẏk+1 − Ẏ ref

k+1‖2

is aimed to regulate the CoM speed to a desired mean value (ẋref , ẏref). In [2], it is stated that by simply
optimizing over the regulated velocity cost stable walking can be achieved. The second part

min
uk

α

2
‖

...
Xk‖2 +

α

2
‖

...
Y k‖2,

minimizes the jerks, which helps, when weakly weighted (small α), smooth the contact forces and therefore
the resulting motion. The third part

min
uk

γ

2
‖Zxk+1 − Z

xref

k+1‖
2 +

γ

2
‖Zyk+1 − Z

yref
k+1‖

2,

makes the CoP track a reference CoP, which is calculated using (15). When weakly weighted, centering
the CoP in the foot allows for faster and more robust reactions to changes in the state of the system
or in the desired speed of CoM. Therefore, the CoP references Zxref

k+1 and Zyrefk+1 are simply the foot step
location, which is what (15) calculates.

3.8 Quadratic Program

To write the optimization in the canonical form

min
uk

1

2
uTkQkuk + pTk uk (33a)

Gkuk ≤ hk (33b)

where the constraints are given in (19), (28) and (31). Let’s first write the x component of (32) in a
matrix form. The x component itself can be separated into three parts: jerk, velocity and CoP. We will
write each of the three parts in matrix form

α

2
‖

...
Xk‖2 =

1

2
α

...
X
T

k

...
Xk

β

2
‖Ẋk+1 − Ẋref

k+1‖2 =
1

2
β(Ẋk+1 − Ẋref

k+1)T (Ẋk+1 − Ẋref
k+1)

=
1

2
β(Svx̂k + Uv

...
Xk − Ẋref

k+1)T (Svx̂k + Uv
...
Xk − Ẋref

k+1)

=
1

2
β(x̂Tk S

T
v +

...
X
T

k U
T
v − (Ẋref

k+1)T )(Svx̂k + Uv
...
Xk − Ẋref

k+1),

14



note that we are minimizing over the decision variables
...
Xk and Xf

k , therefore any term that does not
contain a decision variables can be seen equivalent to zero to the optimization algorithm. With this in
mind, we can write the above polynomial in an optimization equivalent form

1

2
β(x̂Tk S

T
v +

...
X
T

k U
T
v − (Ẋref

k+1)T )(Svx̂k + Uv
...
Xk − Ẋref

k+1)

equivalent to
1

2
β
(
x̂Tk S

T
v Uv

...
Xk +

...
X
T

k U
T
v Svx̂k +

...
X
T

k U
T
v Uv

...
Xk −

...
X
T

k U
T
v Ẋ

ref
k+1 − (Ẋref

k+1)TUv
...
Xk

)
=

1

2
β
(...
X
T

k U
T
v Uv

...
Xk +

...
X
T

k (UTv Svx̂k − UTv Ẋref
k+1) + (x̂Tk S

T
v Uv − (Ẋref

k+1)TUv)
...
Xk

)
,

since both (x̂Tk S
T
v Uv − (Ẋref

k+1)TUv)
...
Xk and

...
X
T

k (UTv Svx̂k−UTv Ẋref
k+1) are scalars and we can see that they

are the transpose of each other we can say that

β

2
‖Ẋk+1 − Ẋref

k+1‖2 is equivalent to
1

2
β

...
X
T

k U
T
v Uv

...
Xk + β(x̂Tk S

T
v − (Ẋref

k+1)T )Uv
...
Xk.

For the CoP term we have

γ

2
‖Zxk+1 − Z

xref

k+1‖
2

=
γ

2
‖Zxk+1 − U ck+1X

fc
k − Uk+1X

f
k ‖

2

=
γ

2
‖Szx̂k + Uz

...
Xk − U ck+1X

fc
k − Uk+1X

f
k ‖

2

=
γ

2
(Szx̂k + Uz

...
Xk − U ck+1X

fc
k − Uk+1X

f
k )T (Szx̂k + Uz

...
Xk − U ck+1X

fc
k − Uk+1X

f
k )

=
γ

2
(x̂Tk S

T
z +

...
X
T

k U
T
z − (Xfc

k )T (U ck+1)T − (Xf
k )TUTk+1)(Szx̂k + Uz

...
Xk − U ck+1X

fc
k − Uk+1X

f
k ).

As before we need to get rid of the term that does not contain any decision variables

=
γ

2

[
x̂Tk S

T
z (Uz

...
Xk − Uk+1X

f
k ) +

...
X
T

k U
T
z (Szx̂k + Uz

...
Xk − U ck+1X

fc
k − Uk+1X

f
k )

− (Xfc
k )T (U ck+1)T (Uz

...
Xk − Uk+1X

f
k )− (Xf

k )TUTk+1(Szx̂k + Uz
...
Xk − U ck+1X

fc
k − Uk+1X

f
k )
]

=
γ

2

[...
X
T

k U
T
z Uz

...
Xk + (Xf

k )TUTk+1Uk+1X
f
k +

...
X
T

k U
T
z (Szx̂− U ck+1X

fc
k )

+ (x̂Tk S
T
z − (Xfc

k )T (U ck+1)T )Uz
...
Xk − (Xf

k )TUTk+1(Szx̂k − U ck+1X
fc
k )

+ ((Xfc
k )T (U ck+1)T − x̂Tk STz )Uk+1X

f
k −

...
X
T

k U
T
z Uk+1X

f
k − (Xf

k )TUTk+1Uz
...
Xk

]
.

Also we can group the scalar terms which gives us

γ

2

(...
X
T

k U
T
z Uz

...
Xk + (Xf

k )TUTk+1Uk+1X
f
k −

...
X
T

k U
T
z Uk+1X

f
k − (Xf

k )TUTk+1Uz
...
Xk

)
+ γ(x̂Tk S

T
z − (Xfc

k )T (U ck+1)T )Uz
...
Xk − (x̂Tk S

T
z − (Xfc

k )T (U ck+1)T )Uk+1X
f
k

Thus, in QP form we can write the components explicitly as

Qk =

[
Q′k 0
0 Q′k

]
(34)

Q′k =

[
αI + βUTv Uv + γUTz Uz −γUTz Uk+1

−γUTk+1Uz γUTk+1Uk+1

]
(35)

pk =


βUTv (Svx̂k − Ẋref

k+1) + γUTz (Szx̂k − U ck+1X
fc
k )

−γUTk+1(Szx̂k − U ck+1X
fc
k )

βUTv (Sv ŷk − Ẏ ref
k+1) + γUTz (Sz ŷk − U ck+1Y

fc
k )

−γUTk+1(Sz ŷk − U ck+1Y
fc
k )

 (36)

Gk =


Dk+1

[
Uz −Uk+1 0 0
0 0 Uz −Uk+1

]
Gj+1M̃[

01×N nxs 0 01×N nys 0
01×N nxf 0 01×N nyf 0

]
 (37)

15



hk =



bk+1 +Dk+1

[
U ck+1X

fc
k − Szx̂k

U ck+1Y
fc
k − Sz ŷk

]

bj+1 + Gj+1


fxk
0
fyk
0


tr

[
‖vs‖max

‖vf‖max

]
+

[
nxs nys
nxf nyf

] [
xf (t)
yf (t)

]


. (38)

3.8.1 Cost function for Initial Double Support Phase

The only difference here is for the CoP part, which changes to

γ

2
‖Zxk+1 − Z

xref

k+1‖
2

=
γ

2
‖Zxk+1 − U ck+1X

fc
k − Uk+1X

f
k ‖

2

=
γ

2
‖Zxk+1 − U ck+1X

fc
0 − Uk+1[:, :1]Xfc

1 − Uk+1[:, 1:]Xf
1 ‖2

=
γ

2
‖Szx̂k + Uz

...
Xk − U ck+1X

fc
0 − Uk+1[:, :1]Xfc

1 − Uk+1[:, 1:]Xf
1 ‖2

let a = Szx̂k − U ck+1X
fc
0 − Uk+1[:, :1]Xfc

1 and we have the above equation as

γ

2
‖Szx̂k + Uz

...
Xk − U ck+1X

fc
0 − Uk+1[:, :1]Xfc

1 − Uk+1[:, 1:]Xf
1 ‖2

=
γ

2
‖a+ Uz

...
Xk − Uk+1[:, 1:]Xf

1 ‖2

=
γ

2
(a+ Uz

...
Xk − Uk+1[:, 1:]Xf

1 )T (a+ Uz
...
Xk − Uk+1[:, 1:]Xf

1 )

=
γ

2
(aT +

...
X
T

k U
T
z − (Xf

1 )TUk+1[:, 1:]T )(a+ Uz
...
Xk − Uk+1[:, 1:]Xf

1 )

similar as before we can get rid of the scalar term that has nothing to do with the decision variables
...
Xk

and Xf
1

γ

2
(aT +

...
X
T

k U
T
z − (Xf

1 )TUk+1[:, 1:]T )(a+ Uz
...
Xk − Uk+1[:, 1:]Xf

1 )

=
γ

2

[
aT (Uz

...
Xk − Uk+1[:, 1:]Xf

1 ) +
...
X
T

k U
T
z (a+ Uz

...
Xk − Uk+1[:, 1:]Xf

1 )

− (Xf
1 )TUk+1[:, 1:]T (a+ Uz

...
Xk − Uk+1[:, 1:]Xf

1 )
]

=
γ

2

[...
X
T

k U
T
z Uz

...
Xk + (Xf

1 )TUk+1[:, 1:]TUk+1[:, 1:]Xf
1 + 2aTUz

...
Xk − 2aTUk+1[:, 1:]Xf

1

−
...
X
T

k U
T
z Uk+1[:, 1:]Xf

1 − (Xf
1 )TUk+1[:, 1:]TUz

...
Xk

]
.

Along with

1

2
β

...
X
T

k U
T
v Uv

...
Xk + β(x̂Tk S

T
v − (Ẋref

k+1)T )Uv
...
Xk and

1

2
α

...
X
T

k

...
Xk,

we can have

Q′k =

[
αI + βUTv Uv + γUTz Uz −γUTz Uk+1[:, 1:]

−γUk+1[:, 1:]TUz γUk+1[:, 1:]TUk+1[:, 1:]

]

pk =


βUTv (Svx̂k − Ẋref

k+1) + γUTz (Szx̂k − Uk+1[:, :1]Xfc
1 )

−γUk+1[:, 1:]T (Szx̂k − Uk+1[:, :1]Xfc
1 )

βUTv (Sv ŷk − Ẏ ref
k+1) + γUTz (Sz ŷk − Uk+1[:, :1]Y fc1 )

−γUk+1[:, 1:]T (Sz ŷk − Uk+1[:, :1]Y fc1 )


G =

Dk+1

[
Uz −Uk+1[:, 1:] 0 0
0 0 Uz −Uk+1[:, 1:]

]
Gj+1M̃



16



Table 2: Function Inputs

N dt h g tPf m

Up X X
Uv X X
Ua X X
Uz X X X X
Sp X X
Sv X X
Sa X X
Sz X X X X
U ck+1 X X X
Uk+1 X X X

h =


bk+1 +Dk+1

[
U ck+1X

fc
0 + Uk+1[:, :1]Xfc

1 − Szx̂k
U ck+1Y

fc
0 + Uk+1[:, :1]Y fc1 − Sz ŷk

]

bj+1 + Gj+1


fx1
0
fy1
0




3.9 Forward Walking Experiment Details

At the beginning the left and right foot are placed 0.3m apart, while the CoM is at positioned at (0, 0).
Therefore, the left foot is positioned at (0, 0.15) and the right foot is positioned at (0,−0.15). We use a
reference speed of vx = 0.3m/s and vy = 0.0m/s.

References

[1] A. Herdt, N. Perrin, and P. Wieber, “Walking without thinking about it,” in 2010 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), October 18-22, 2010, Taipei, Taiwan,
2010, pp. 190–195.

[2] A. Herdt, H. Diedam, P.-B. Wieber, D. Dimitrov, K. Mombaur, and M. Diehl, “Online walking motion
generation with automatic foot step placement,” Advanced Robotics, vol. 24, no. 5-6, pp. 719–737,
2010.

[3] M. Naveau, M. Kudruss, O. Stasse, C. Kirches, K. Mombaur, and P. Souères, “A reactive walking
pattern generator based on nonlinear model predictive control,” IEEE Robotics and Automation
Letters, vol. 2, no. 1, pp. 10–17, 2017.

17


	Introduction
	Linear Inverted Pendulum Model
	Biped Walking Problem
	Motion of the Center of Mass
	Motion of the Center of Pressure
	Motion of the feet on the ground
	Constraints on the Center of Pressure
	Constraints on the Center of Pressure for Initial Double Support Phase
	Constraints on Foot Step Placements
	Foot Placement w.r.t. Support Foot
	Foot Placement w.r.t. Support Foot for Initial Double Support Phase
	Foot Placement w.r.t. Swing Foot
	Foot Placement w.r.t. Swing Foot for Initial Double Support Phase

	Cost Function
	Quadratic Program
	Cost function for Initial Double Support Phase

	Forward Walking Experiment Details


