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The system considered is described as a stochastic The problem under the updated cost dy(t) = ( — h(z(t), Va(z(¢),t; 0), ¢, u(t))
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The Deep FBSDE neural network architecture is shown below, at each time step the neural
network estimates Vx. The neural network is optimized using a weight decayed L2 loss.
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The control is saturated as A
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The state constraint is applied via a penatly function
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For a state constraint of [-1, 3], the penalty function with Comparison between constrained and unconstrained controller
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Taking both state constraints and control saturation into e e e e
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To ensure numerical stability, we use The presented experimental results are conducted | | |
the square root Of state cost variance k <_ k + 5 on the Cart'p°|e SWing-up taSk. TWO state —— Unconstrained —— Constrained ——- Constraint Boundary
over a fixed number of iterations as the constraint settings were tested: (i) constraining 8
update threshold, and gradually harden 0 0—As cart position and cart velocity; (ii) constraining the =¢
the penalty function p(x). Since the B+ 8 sum of kinetic and potential energy. We see that in g
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