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The system considered is described as a stochastic 
differential equation (SDE)

The problem under the updated cost 
function can be recasted as a 
forward-backward stochastic 
differential equation (FBSDE) as shown 
on the right, where Vx is the partial 
derivative of the value function w.r.t. 
the state, Φ represents learned 
weights, and the Hamiltonian is defined 
as

The Deep FBSDE neural network architecture is shown below, at each time step the neural 
network estimates Vx . The neural network is optimized using a weight decayed L2 loss. 

The objective is to find a control sequence that minimizes 
the following cost

with state constraints

and control saturation
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The control is saturated as

To ensure numerical stability, we use 
the square root of state cost variance 
over a fixed number of iterations as the 
update threshold, and gradually harden 
the penalty function p(x). Since the 
state cost variance would never 
decrease to zero, we also set a 
minimum value for the threshold.

The presented experimental results are conducted 
on the cart-pole swing-up task. Two state 
constraint settings were tested: (i) constraining 
cart position and cart velocity; (ii) constraining the 
sum of kinetic and potential energy. We see that in 
both settings, the learned controller is able to 
respect the constraint boundaries. 

Comparison between constrained and unconstrained controller

Effectiveness of adaptive update scheme

Energy constraint comparison

The state constraint is applied via a penatly function

For a state constraint of [-1, 3], the penalty function with 
different parameterizations are shown in the figure below.

Taking both state constraints and control saturation into 
consideration, the overall cost function has the form

The corresponding control cost is


